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Question 2

Proof. Let F : X → Y be a continuous mapping between two metric spaces.
Let E ⊂ X. Take x ∈ E. Then, for all δ > 0 there exists a y ∈ E such that
y ̸= x and dX(x, y) < δ.

Because f is continuous at x, for all ε > 0 there exists a δ > 0 so for any
z ∈ E if dX(x, z) < δ, then,

dY (f(z), f(x)) < ε

Hence, there exists y so that dX(y, x) < δ and hence dY (f(y), f(x)) < ε for any
positive ε.

By design, y ∈ E. Because f is continuous,

f(y) ∈ f(E)

Hence, f(x) ∈ f(E). Since x is an arbitrary element of E it follows that,

f(E) ⊂ f(E)

Question 3

Proof. Let f : X → R be a real valued, continuous function from a metric space
X. Let Z(f) be the set of values p such that,

f(p) = 0

To show this set is closed, consider the compliment, Zc(f) which has elements
q so that,

f(q) ̸= 0
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We want to show that this set is open for any choice of q.

Because f is continuous, if ε = |f(q)| there exists a δ > 0 so that for all
x ∈ X if d(x, q) < δ, then,

|f(q)− f(x)| < ε = |f(q)|
||f(q)| − |f(x)|| < |f(q)|
|f(q)| − |f(x)| < |f(q)|

0 < |f(x)|

Hence, the ball B(q, δ) ⊂ Zc(f) as for each x ∈ B(q, δ)

0 < |f(x)|
f(x) ̸= 0

Thus Zc(f) is open and so Z(f) is closed.

Question 4

Proof. Let f and g be continuous mappings from a metric space X onto a metric
space Y . Let E be a dense subset of X. Hence every point x ∈ X is a limit
point of E. Because f is continuous, for all ε > 0 there exists a δ > 0 such that
for all y ∈ X if d(y, x) < δ then,

d(f(x), f(y)) < ε

Because E is dense in X no matter what δ, we can find a element e ∈ E such
that d(e, x) < δ. Hence,

d(f(e), f(x)) < ε

Hence, for any ε > 0 and x ∈ X, we can find an element f(E) that isn’t f(x)
contained within the ball B(f(x), ε). Thus f(E) is dense in f(X).

Assume g(p) = f(p) for all p ∈ E. Define h(x) : X → Y as

h(x) = g(x)− f(x)

Then, for any p,

h(p) = 0

Also, if h(p) = 0, then,

g(p) = h(p)

So, Z(h) = E. By problem 3, E is closed. Because E is closed and dense,
E = X. Hence, p ∈ x and

g(p) = f(p)
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Question 5

Proof. Let f be a real continuous function on a closed set E ⊂ R1. Since E is
closed, Ec is open and because we are working in R1, it can be expressed as
a series of open intervals (an, bn) including possibly the intervals (−∞, a) and
(b,∞). Construct g as follows,

g(x) =


f(x) if x ∈ E

f(an) +
(x−an)
(bn−an)

(f(bn)− f(an)) if x ∈ (an, bn)

f(a) if x ∈ (∞, a)

f(b) if x ∈ (b,∞)

Now to prove continuity, we must take each case individually.

Case 1 Assume x < a. This proof also works for x > b by reversing inequali-
ties. Let ε > 0. Let δ = a− x. Then for any y ∈ X if

|y − x| < a− x

y − x < a− x

y < a

Thus, g(y) = f(a). By assumption, g(x) = f(a). So

|g(x)− g(y)| = 0 < ε

Case 2 Assume x ∈ (an, bn). Let ε > 0. Choose δ = min{x − an, bn −
x, (bn−an)ε

|f(bn)−f(an)|}. Then, for all y ∈ X, if

|y − x| < δ

|y − x| < x− an

y > ak

and

|y − x| < bn − x

y < bn

Thus, y ∈ (an, bn). Also,

|y − x| < (bn − an)ε

|f(bn)− f(an)|
|y − x||f(bn)− f(an)|

bn − an
< ε

|g(y)− g(x)| < ε

Hence, the function g is continuous on these intervals.
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Case 3 Assume x ∈ E. If x ∈ Eo, then there exists a δ1 so that if d(x, y) < δ1)
then, y ∈ E. Because f is continuous, for each ε > 0 there exists a δ2 so that
for all y ∈ X, if d(x, y) < δ2 then

|f(x)− f(y)| < ε

Choose δ = min{δ1, δ2}. Then for any point y, if d(x, y) < δ then y ∈ E and
hence,

|g(x)− g(y)| = |f(x)− f(y)| < ε

Now consider the case that x /∈ Eo. Then x is one of the endpoints of the closed
intervals. Let ε > 0. Because f is continuous, there exists a δ1 > 0 such that
for any point y within δ1 of x on the E side,

|f(x)− f(y)| < ε

|g(x)− g(y)| < ε

Now to look at the non-E side. Let δ2 = (bn−an)ε
|f(bn)−f(an)| . Then for any y on the

non-E side if d(x, y) < δ2

|y − x||f(bn)− f(an)|
bn − an

< ε

|g(y)− g(x)| < ε

Hence, with δ = min{δ1, δ2} the conditions of continuity are met at these points.

Question 6

Proof. Suppose E is compact. Let f be a function defined on E.

(=>) Suppose that f is continuous on E. Let {xn} be a sequence in E. This
also defines a sequence in the graph, (xn, f(xn)). Because E is compact, it is
also sequentially compact and so there exists a subsequence xnk

and value x ∈ E
such that

lim
k→∞

xnk
= x

Because f is continuous, we can apply it to this statement. Thus,

lim
k→∞

f(xnk
) = f(x)

Now consider the sequence in the graph (xn, f(xn)). By the argument above,
there exists a subsequence (xnk

, f(xnk
)) such that

lim
k→∞

(xnk
, f(xnk

)) = (x, f(x))

Hence, this arbitrarily chosen sequence in the graph of f has a convergent subse-
quence. Thus, the graph of f is sequentially compact and consequently compact.
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(<=) Assume the graph of f is compact and thus sequentially compact. Pro-
ceeding by contradiction assume f is not continuous on E. Then f must not be
continuous at a point, call it x ∈ E. Then there exists a ε > 0 such that for all
δ > 0 there exists a point y ∈ E for which d(x, y) < δ and

d(f(x), f(y)) ≥ ε

Choose yn so that d(x, yn) <
1
n and d(f(x), f(yn)) ≥ ε for n ∈ N. This defines

a sequence {(yn, f(yn))} in the graph of f . By the sequential compactness of f
this sequence has a convergent subsequence, call it {(ynk

, f(ynk
))}.

Because d(x, ynk
) < 1

n ,

lim
k→∞

ynk
= x

Also, because d(f(x), f(ynk
)) ≥ ε, no subsequence of {yn} converges to f(x).

Thus, no subsequence of {(yn, f(yn))} converges to (x, f(x)).

Since {yn} converges to x, and f only takes the value of f(x) at x, f(yn) must
converge to f(x) for {(yn, f(yn))} to converge to an element of the graph of f .
Because this isn’t true, no subsequence of (yn, f(yn)) converges to an element of
the graph of f . This contradicts the assumption that any sequence of the graph
of f has a subsequence that converges to an element in the graph of f . Hence,
the graph of f isn’t sequentially compact, which is a contradiction. Thus, f
must be continuous.

Question 7

Proof. Define f and g on R2 as follows,

f(x, y) =

{
0 if (x, y) = 0

xy2

(x2+y4) if (x, y) ̸= 0

g(x, y) =

{
0 if (x, y) = 0

xy2

(x2+y6) if (x, y) ̸= 0

We want to find the radius a bound for f(x, y), observe the following

0 ≤ (x− y2)2 = x2 − 2xy2 + y4

2xy2

x2 + y4
≤ 1

2xy2

x2 + y4
≤ 1

2

Hence, f is bounded for all values in R2. Now consider g. Let ε > 0, let
(y3, y) ∈ B((0, 0), ε) and by contradiction assume that M ≥ max{g(y3, y), 1}.
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Choose the point ( y3

M3 ,
y
M ). It is clear that this point lies within the epsilon ball

as | y3

M3 | < |y3| and | y
M | < |y|. The value at this point is the following

g(
y3

M3
,
y

M
) =

y3

M3 (
y
M )2

(( y3

M3 )2 + ( y
M )6))

g(
y3

M3
,
y

M
) =

M

y

The ball around 0 always contains points with y < 1, hence there is always a
point inside the ball for which,

|g( y3

M3
,
y

M
)| > M

Thus, g is unbounded in any ball around (0, 0).

To show that f is not continuous at (0, 0) consider the following limit,

lim
y→0

f(y2, y) = lim
y→0

y4

2y4

lim
y→0

f(y2, y) = lim
y→0

1

2

lim
y→0

f(y2, y) =
1

2

Hence, f is not continuous at (0, 0).

Now consider the restrictions of f and g to lines. When the lines don’t pass
through (0, 0) it is clear that there are no discontinuities. As such we need only
consider lines that do pass through (0, 0). To do this, let y = mx + b for some
constants m and b.

f(x,mx) =
x(mx)2

(x2 + (mx)4)

f(x,mx) =
m2x3

(x2(1 +m2x2))

lim
x→0

f(x,mx) =
mx

1 +m2x2

lim
x→0

f(x,mx) = 0

So, these lines are continuous at (0, 0) and thus are continuous on R2.

Question 8

Proof. Let f be a real uniformly continuous function on the bounded set E in
R1. Then choose a ε > 0, by the uniform continuity of f there exists a δ > 0
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such that if d(x, y) < δ then d(f(x), f(y)) < ε.

E can be written as the union of some interval {En}. Because E is bounded
and nonempty, each En is bounded and nonempty. So, sup(En) and inf(En)
exist. Let k ∈ N. For each of these interval divide then into delta sized chunks
as follows,

{Enk
} = [inf(En) + (k − 1)δ, inf(En) + min{3k

2
δ, sup(En)]

Then each {Enk
} is closed and bounded and hence compact. Thus, by theorem

4.15, f is bounded on ∪Enk
and E ⊂ ∪Enk

. So, f is bounded on E.

As a counter example, take f(x) = x over R1. This function is uniformly
continuous as for δ = ε, if |x− y| < δ = ε

|x− y| < ε

But also, it is clearly unbounded at by our selection of domain, x is unbounded.

Question 9

Proof. Assume f : X → Y is uniformly continuous. Then, for each ε > 0 there
exists a δ > 0 such that if x ∈ X, y ∈ X and d(x, y) < δ,

d(f(x), f(y)) < ε

Choose z such that d(z, x) = d(z, y) = 1
2d(x, y). Then, let E = B(z, 1

2d(x, y).
Then diam E = d(x, y). By the given, if diam E < δ then,

diam f(E) < ε

As each possible combination of p, q ∈ E lies within δ of each other and hence
each d(f(p), f(q)) < ε. Which leads to the conclusion above.

Part (B)

Proof. Suppose f : (0, 1] → R is continuous.

(=>) Assume f is uniformly continuous. By question 8 of the homework, f is
bounded. In order to construct the extension, call it g, we just need to let

g(0) = lim
x→0

f(x)
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Let ε > 0. Hence, we want to show that for all 0 < x < δ, there exists some
g(0) so that

|g(0)− f(x)| < ε

We know that there exists a δ so that for any x, y with |x−y| < δ, |f(x)−f(y)| <
ε. Then, if |x| < δ there exists some g(0) such that,

|g(0)− f(y)| < ε

Define g : [0, 1] → R as follows,

g(x) =

{
f(x) if x ∈ (0, 1]

g(0) if x = 0

(<=) Assume f has a continuous extension, g on [0, 1]. Then, g is uniformly
continuous on [0, 1] as it is a compact set. Then,

g((0, 1]) = f((0, 1])

Because g is uniformly continuous on this interval, f is as well.
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