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Question 7

Proof. Let {a,} be a sequence such that a,, > 0. Assume ) a,, converges. By
the Cauchy Shwarz Inequality,
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Y a, converges and by the p-test since 2 > 1, 3. 1/n? also converges. Hence,
the term on the right is some real number and thus the sequence of partial
sums is bounded. That sequence is monotone as a, > 0. By the monotone
convergence theorem, the sequence of partial sums converges and hence so does
the series itself. O
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Question 8

Proof. Suppose that Y a, converges and that {b,} is monotonic and bounded.
By the monotone convergence theorem {b,,} converges to some number, call it
b. Then the sequence {b, —b} = {c,} converges to 0 monotonically. This means
either

cop>ClL>C > ...
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By selecting {b — b,,} in the second case we can ensure that the top inequality
holds. Also, the partial sums of »_ a,, clearly are bounded as they converge.

By theorem 3.42 % a,c¢, converges. Hence either,

Z ApCp = Z an(bn - b) = Z anbn — Z anb

or
Zancn = Zan(b —b,) = Zanb — Zanbn
In either case, this implies that > a,b, converges. O



Question 9

(a)
Proof. We will employ the ratio test to find the radius of convergence. Then
examine the following limit,
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Because these limits exist, they are equivalent to the limsup. So, if |z| < 1 the
series converges and if |z| > 1 it diverges. Thus, R = 1. O

(b)

Proof. Once more utilize the ratio test.
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Because these limits exist, they are equivalent to the limsup. So, for any z the
series converges. Thus, R = co. O

(c)
Proof. Examine the following limit in accordance with the ratio test
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Because these limits exist, they are equivalent to the limsup. So, if |2z| < 1 the
series converges and if |2z| > 1 it diverges. Thus, R = 1/2. O

(d)

Proof. Examine the following limit in accordance with the ratio test
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Because these limits exist, they are equivalent to the limsup. So, if |5 < 1 the
series converges and if || > 1 it diverges. Thus, R = 3.

Question 10

Proof. Let {a,} be a sequence of integers such that there are an infinite number
of elements distinct from 0. Then, for any NV € N there exists an n > N so that
an, # 0so d(ay,0) > 1. This contradicts the statement that {a,} converges to 0.



Now for the ratio test
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Suppose lim |*=2£| < 1. Because a,, € Z, |an11| < |a,| — 1. Hence, when N =
n— 00 n

ag, for each n > N, a,, = 0. This means {a,} converges to 0 which contradicts

the assumption. Hence lim |a2+1 > 1 and so the radius of convergence must
n—oo n

be less than or equal to 1. O

Question 11

Suppose a, > 0, s, = ag + a1 + ... + ap, and Y _ a,, diverges.

(a)
Proof. s, is monotone because a,, > 0. Because it doesn’t converge, it must be

unbounded. Assume that lim 112 = 0. Then, for all € > 0, there exists an
n— 00 n

N € Nso that if n > N theln7

Hence,

a anN
|1+na |§|1+
n an
anp < e+ean = M

| <e

Then we can take the My = max{aj,as,...,an}. Then M = max{M;, My}
bounds {a, } which is a contradiction.

. an an 1
Thus, nh—{jgo T #0s0 > 71— diverges. O

(b)
Proof. We will begin by combining terms for the right side of the inequality.
Let kK e N.
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Because {s,,} is monotonically increasing as a,, > 0,

AN+1+aN+2 + T ANtk AN +1 AN +k
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We assume that {s,,} — oco. Hence, lim —*2- = (. Consequently,
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So, there exists a K for which

s 1 sy a
- ole S o
SN+K 2 N1 Sn

Then, for each M € N, we can divide the sum into K length sums as follows.
Let m be the closest integer greater than M /K.
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The right hand diverges as the limit of 1/2 is not 0. Hence, by the squeeze
theorem )~ | 9= diverges as well. O

(c)

Proof. We will attempt to prove the following inequality;

First, simplify the RHS
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The final step is possible because s,,_1 < s,,. Next to show that ) % converges.
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Notice that the series on the RHS telescopes leaving only the first term and last

term. Hence,

Because a, > 0,

Hence, the series converges, particularly to a value within these bounds.

(d)
Proof. First consider the series
Qn
Z 1+ n2a,
We can rewrite the sequence to produce the following inequality,
an 1 1

1+ n2a, ai+n2_n2
n

Hence,
a 1
0< Z ﬁ < Z 2
By the p-series test, the RHS converges which implies that
(¢2%)
Z 1+ n2a,
does as well.

Now consider the following series,

a
Zl—&—:zan

O

We cannot use the same procedure as above since Y 1 diverges. If {a,} = 1,

then

an 1/n
Zl+nan _Zl+1
ZlJrnan 727



Hence, the series diverges. However, if {a,} = #,
an 1/n?
Z 1+na, Z 1+4
an 1 1
= < —_—
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Then, by the p-series test the RHS converges. Hence, by the comparison test,
our series also diverges. Consequently, we cannot say for certain whether this
series converges or diverges for arbitrary {a,}. O

Question 12

Suppose a,, > 0 and }_ a,, converges. Put,

oo
Tn = Z QAm,
m=n
(a)

Proof. We will attempt to prove the following inequality. Let m < n

aﬂ+...+al>1_&

T'm Tn T'm

Begin with the left hand side,
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Thus

)

So,



Let p be the desired width of the intervals so that p = N — m. Let N; be the

next multiple of p greater than N. Take some j so that jp = IV;. Then we can
split the sum into a sum of sums.
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As N; tends to infinity, so does j, consequently,
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So, the left hand side diverges. O

(b)
Proof. First let us try and prove the following inequality,
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Rewrite the left hand side,

an — Tn — Tn+1
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Now to show the series of the left side converges. Consider the finite sums up
to some N € N.

N N
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By observation, the right hand side is telescoping so we can rewrite it as follows.

N
Qy,
z_j Tfn < 2y/11 — 2N
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Because a, > 0,

N a 00 e}
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N a N+1
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As N tends to infinity, the far right side tends towards a finite limit and hence

the middle is squeezed, implying that ZZO=1 % converges. O



