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Question 7

Proof. Let {an} be a sequence such that an > 0. Assume
∑

an converges. By
the Cauchy Shwarz Inequality,∑ √

an
n

≤
(∑

an

)1/2 (∑
1/n2

)1/2
∑

an converges and by the p-test since 2 > 1,
∑

1/n2 also converges. Hence,
the term on the right is some real number and thus the sequence of partial
sums is bounded. That sequence is monotone as an > 0. By the monotone
convergence theorem, the sequence of partial sums converges and hence so does
the series itself.

Question 8

Proof. Suppose that
∑

an converges and that {bn} is monotonic and bounded.
By the monotone convergence theorem {bn} converges to some number, call it
b. Then the sequence {bn−b} = {cn} converges to 0 monotonically. This means
either

c0 ≥ c1 ≥ c2 ≥ . . .

or

c0 ≤ c1 ≤ c2 ≤ . . .

By selecting {b − bn} in the second case we can ensure that the top inequality
holds. Also, the partial sums of

∑
an clearly are bounded as they converge.

By theorem 3.42
∑

ancn converges. Hence either,∑
ancn =

∑
an(bn − b) =

∑
anbn −

∑
anb

or∑
ancn =

∑
an(b− bn) =

∑
anb−

∑
anbn

In either case, this implies that
∑

anbn converges.
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Question 9

(a)

Proof. We will employ the ratio test to find the radius of convergence. Then
examine the following limit,

lim
n→∞

(n+ 1)3zn+1

n3zn
= z lim

n→∞
(
1

n
+ 1)3 = z

Because these limits exist, they are equivalent to the lim sup. So, if |z| < 1 the
series converges and if |z| > 1 it diverges. Thus, R = 1.

(b)

Proof. Once more utilize the ratio test.

lim
n→∞

2n+1zn+1n!

(n+ 1)!2nzn
= lim

n→∞

2z

n+ 1
= 0

Because these limits exist, they are equivalent to the lim sup. So, for any z the
series converges. Thus, R = ∞.

(c)

Proof. Examine the following limit in accordance with the ratio test

lim
n→∞

2n+1zn+1n2

(n+ 1)22nzn
= lim

n→∞

2z

( 1n + 1)2
= 2z

Because these limits exist, they are equivalent to the lim sup. So, if |2z| < 1 the
series converges and if |2z| > 1 it diverges. Thus, R = 1/2.

(d)

Proof. Examine the following limit in accordance with the ratio test

lim
n→∞

(n+ 1)3zn+13n

3n+1n3zn
= lim

n→∞

( 1n + 1)3z

3
=

z

3

Because these limits exist, they are equivalent to the lim sup. So, if | z3 | < 1 the
series converges and if | z3 | > 1 it diverges. Thus, R = 3.

Question 10

Proof. Let {an} be a sequence of integers such that there are an infinite number
of elements distinct from 0. Then, for any N ∈ N there exists an n ≥ N so that
an ̸= 0 so d(an, 0) ≥ 1. This contradicts the statement that {an} converges to 0.
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Now for the ratio test

lim
n→∞

an+1z
n+1

anzn
= lim

n→∞

an+1z

an
= z lim

n→∞

an+1

an

Suppose lim
n→∞

|an+1

an
| < 1. Because an ∈ Z, |an+1| ≤ |an| − 1. Hence, when N =

a0, for each n ≥ N , an = 0. This means {an} converges to 0 which contradicts
the assumption. Hence lim

n→∞
|an+1

an
| ≥ 1 and so the radius of convergence must

be less than or equal to 1.

Question 11

Suppose an > 0, sn = a0 + a1 + ...+ ab, and
∑

an diverges.

(a)

Proof. sn is monotone because an > 0. Because it doesn’t converge, it must be
unbounded. Assume that lim

n→∞
an

1+an
= 0. Then, for all ε > 0, there exists an

N ∈ N so that if n ≥ N then,

d(
an

1 + an
, 0) < ε

Hence,

| an
1 + an

| ≤ | aN
1 + aN

| < ε

an < ε+ εaN = M1

Then we can take the M2 = max{a1, a2, . . . , aN}. Then M = max{M1,M2}
bounds {an} which is a contradiction.

Thus, lim
n→∞

an

1+an
̸= 0 so

∑ an

1+an
diverges.

(b)

Proof. We will begin by combining terms for the right side of the inequality.
Let k ∈ N.

1− sN
sN+k

=
sN+k − sN

sN+k

1− sN
sN+k

=
aN+1 + aN+2 + · · ·+ aN+k

sN+k
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Because {sn} is monotonically increasing as an > 0,

aN+1 + aN+2 + · · ·+ aN+k

sN+k
≤ aN+1

sN+1
+ · · ·+ aN+k

sN+k

We assume that {sn} → ∞. Hence, lim
k→∞

sN
sN+k

= 0. Consequently,

lim
k→∞

1− sN
sN+k

= 1

So, there exists a K for which

1− sN
sN+K

=
1

2
≤

N+K∑
n=N+1

an
sn

Then, for each M ∈ N, we can divide the sum into K length sums as follows.
Let m be the closest integer greater than M/K.

∞∑
n=1

an
sn

=

∞∑
i=0

iK+K∑
n=iK+1

an
sn

∞∑
n=1

an
sn

≥
∞∑
i=0

1

2

The right hand diverges as the limit of 1/2 is not 0. Hence, by the squeeze
theorem

∑∞
n=1

an

sn
diverges as well.

(c)

Proof. We will attempt to prove the following inequality;

an
s2n

≤ 1

sn−1
− 1

sn

First, simplify the RHS

1

sn−1
− 1

sn
=

sn − sn−1

sn−1sn
1

sn−1
− 1

sn
=

an
snsn−1

1

sn−1
− 1

sn
≥ an

s2n

The final step is possible because sn−1 ≤ sn. Next to show that
∑ an

s2n
converges.

N∑
n=1

an
s2n

=
a1
s21

+

N∑
n=2

ans
2
n

N∑
n=1

an
s2n

≤ a1
s21

+

N∑
n=2

1

sn−1
− 1

sn
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Notice that the series on the RHS telescopes leaving only the first term and last
term. Hence,

N∑
n=1

an
s2n

≤ 1

a1
+

1

s1
− 1

sN

Because an > 0,

0 <

N∑
n=1

an
s2n

≤ 1

a1
+

1

s1
− 1

sN

Thus, taking the limits as N tends to infinity yields the following,

0 <

∞∑
n=1

an
s2n

≤ 1

a1
+

1

s1

Hence, the series converges, particularly to a value within these bounds.

(d)

Proof. First consider the series ∑ an
1 + n2an

We can rewrite the sequence to produce the following inequality,

an
1 + n2an

=
1

1
an

+ n2
≤ 1

n2

Hence,

0 ≤
∑ an

1 + n2an
≤
∑ 1

n2

By the p-series test, the RHS converges which implies that∑ an
1 + n2an

does as well.

Now consider the following series,∑ an
1 + nan

We cannot use the same procedure as above since
∑

1
n diverges. If {an} = 1

n ,
then ∑ an

1 + nan
=
∑ 1/n

1 + 1∑ an
1 + nan

=
1

2

∑ 1

n
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Hence, the series diverges. However, if {an} = 1
n2 ,∑ an

1 + nan
=
∑ 1/n2

1 + 1
n∑ an

1 + nan
=
∑ 1

n2 + n
≤
∑ 1

n2

Then, by the p-series test the RHS converges. Hence, by the comparison test,
our series also diverges. Consequently, we cannot say for certain whether this
series converges or diverges for arbitrary {an}.

Question 12

Suppose an > 0 and
∑

an converges. Put,

rn =

∞∑
m=n

am

(a)

Proof. We will attempt to prove the following inequality. Let m < n

am
rm

+ · · ·+ an
rn

> 1− rn
rm

Begin with the left hand side,

am
rm

+ · · ·+ an
rn

>
am + · · ·+ an

rm
am
rm

+ · · ·+ an
rn

>
rm − rn

rm
am
rm

+ · · ·+ an
rn

> 1− rn
rm

Thus,

n∑
i=m

ai
ri

> 1− rn
rm

Because n > m, rn > rm. We can choose an N large enough so that

rN
rm

<
1

2

So,

N∑
i=m

ai
ri

>
1

2
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Let p be the desired width of the intervals so that p = N −m. Let Nj be the
next multiple of p greater than N . Take some j so that jp = Nj . Then we can
split the sum into a sum of sums.

Nj∑
i=1

ai
ri

=

j−1∑
i=0

ip+p∑
n=ip+1

an
rn

Nj∑
i=1

ai
ri

>

j−1∑
i=0

1− rip+p

rip+1

Nj∑
i=1

ai
ri

>

j−1∑
i=0

1

2

As Nj tends to infinity, so does j, consequently,

∞∑
i=1

ai
ri

>

∞∑
i=0

1

2

So, the left hand side diverges.

(b)

Proof. First let us try and prove the following inequality,

an√
rn

< 2(
√
rn −√

rn+1)

Rewrite the left hand side,

an√
rn

=
rn − rn+1√

rn
an√
rn

=
√
rn − rn+1√

rn
an√
rn

=
√
rn − rn+1√

an + rn+1

an√
rn

<
√
rn − rn+1√

rn+1

an√
rn

< 2(
√
rn −√

rn+1)

Now to show the series of the left side converges. Consider the finite sums up
to some N ∈ N.

N∑
n=1

an√
rn

<

N∑
n=1

2(
√
rn −√

rn+1)
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By observation, the right hand side is telescoping so we can rewrite it as follows.

N∑
n=1

an√
rn

< 2
√
r1 − 2

√
rN+1

N∑
n=1

an√
rn

< 2

√√√√ ∞∑
n=1

an − 2

√√√√ ∞∑
n=N+1

an

Because an > 0,

N∑
n=1

an√
rn

< 2

( ∞∑
n=1

an −
∞∑

n=N+1

an

)

0 <

N∑
n=1

an√
rn

< 2

(
N+1∑
n=1

an

)

As N tends to infinity, the far right side tends towards a finite limit and hence
the middle is squeezed, implying that

∑∞
n=1

an√
rn

converges.
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