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Question 1

(=>)
Proof. Let E be a disconnected set. Then there exists A and B such that
E=AUB and

Because A C A, ANB = @. If Aor B is empty, then E = Aor E = B
which contradicts the assumption that E is disconnected. Hence A and B are
nonempty.

By contradiction assume A is not open relative to E. Then for all € > 0 and
a € A, B(a,¢) contains a point b € ENA° = ENB. Then a € B which is a
contradiction since AN B = &.

Identically, by contradiction assume B is not open relative to E. Then for
all e >0 and b € B, B(b,¢) contains a point a € ENB*=FENA. Thenbe A
which is a contradiction since BN A = @. O

(<=)
Proof. Let E = AU B where A and B nonempty, AUB = @ and A and B are
both open relative too E.

We want to show that AN B = @. By contradiction, take x € AN B. Be-
cause A C A, z € A. There exists an € > 0, because B is open relative to E, so
that B(z,e) N E C B. This produces a contradiction as z € A and = € B(z,€)
yet AUB = @. Hence AN B = @.

Identically, we want to show that BNA = @. By contradiction, take z € BN A.
Because B € B, ¢ € B. There exists an € > 0, because A is open relative
to E, so that B(z,e) N E C A. This produces a contradiction as © € B and



z € B(z,6) C Byet AUB=@. Hence BNA=g.

It follows that E is disconnected. ]

Question 17

Proof. Let E be the set of all € [0, 1] such that the decimal expansion of x
contains only 4 and 7. For each x € FE, define the sequence a,, such that the
nth element is 1 if the nth element of the decimal expansion is a 4 and a 0 if it
is a 7. Then, let A be the collection of these sequences.

A={a, |z € E}

This collection contains every sequence whose elements are 1 and 0. By theorem
2.14, A is uncountable. We have described a bijection between A and E so F
is also uncountable.

Take y = .1. Let e = .1. Then B(y,e) = (0,.2). There exists no element
of E in this interval because elements must start with either .4 or .7. Hence
E C [4,.8]. Consequently, E is not dense in [0, 1].

E is bounded as for z € E, d(0,z) < .8. It remains to show that E is closed to
prove it compact. Take y € E°. Then the nth decimal of y is neither 4 or 7,
lets call this number a. Call the n + 1th decimal b. Let the decimal expansion
of € be all zeros except for the n + 1st term which is a 1. For b = [1, 8], B(y,€)
is the following interval,

a b—1 a b+1

For these values of b, every © € B(y,¢) has an a in the nth decimal position,
which means z € E¢. Next, consider b = 9, then B(y, €) is the following

a 8 a+1 0
(...10—” + TgRFL e om + 10”+1"')

Even if a + 1 might be a 4 or 7, we know that the n + 1st term is 0. Hence, all
z in this interval are also members of E°. Lastly, consider b = 0 for which the
interval takes the form,

a—1 9 a 1

In this case, even if a — 1 is a 4 or 7, these numbers have a 9 in the n + 1st
decimal position meaning they are all members of E€. Hence, E° is open which
in turn means F is closed. Consequently, FE is compact.

Take 0.4 € E. Let € = 0.01. Then,
B(0.4,0.01) = (0.39,0.41)



This ball contains no elements of E as all other elements start with 0.7 or 0.44.
Hence, for all other x € E, x ¢ B(0.4,0.01). Thus, all elements of E are not
limit points so E is not perfect. U

Question 18

Proof. Let n=0,1,2,.... Let F, be defined as follows,

Fy =[0,1]
F, =10,1/3]U[2/3,1]
Fy = [0,1/9] U [2/9,1/3] U[2/3,7/9) U [8/9, 1]

Then the Cantor set is C' = ﬂZO:O F,,. Because each F), is closed, C' is closed.
Each F, 11 C F, so by theorem 2.38, C' is non-empty. Take z € C. Let € > 0.
There exists n sufficiently large that

1
37 <€
Then there are two cases.
Case 1:
Assume z is an upper bound for its interval. Then, for all n = 0,1,2,... there
exists a point of C at x — 5. Hence for any €, d(z,z — 5&) < € so B(z,¢€)

contains another point in C'. Consequently z € C’.

Case 2:

Assume z is a lower bound for its interval.Then, for all n = 0,1,2,... there
exists a point of C' at = + 3% Hence for any e, d(x,z + 3%) < € so B(z,e€)
contains another point in C'. Consequently z € C”.

Thus, C is perfect.

Lastly, consider the linear transformation of C' so that it operates on the in-
terval [v/2,1 4 /2]. As a result, v/2 is added to every value. Thus, every value
becomes irrational as an irrational added to a rational is irrational. Hence,
C + /2 is irrational, nonempty, and perfect. O



Question 19
(a)

Proof. Let A and B be disjoint closed sets in some metric space X. Because
they are closed,

A=A
B=B
Also, since they are disjoint,
ANB=9g
ANB=9o
ANB=o
Hence, A and B are separated. O

(b)

Proof. Let A and B be disjoint open sets in some metric space X.

Take a € A. For each € > 0, B(a,e¢) contains another point a’ € A. Hence
B(a,€) ¢ B. Consequently, a ¢ B since B is open.

Identically, take b € B. For each € > 0, B(b,¢) contains another point b’ € B.
Hence B(b,€) ¢ A. Consequently, b ¢ A since A is open.

So,
ANB=g
ANB=2
which means A and B are separated. O

(c)

Proof. Fix pe X. Let § > 0. Let

A={qldp,q) <5}
B={q|d(p,q) >}

So, A = B(p,d) so A is open. Take q € B, let d(p,q) = ¢ + € for some € > 0.
Let z € B(q,€/2), so d(q,z) < €/2. By the reverse triangle inequality,

d(p,q) — d(q,z) < d(p, 2)



We know that § + € < d(p, ¢) and d(q, z) < €/2. Hence,

d+e—¢€/2 <d(p,=2)
6 <d(p, =)

So, z € B. Hence B is open. Lastly, by the trichotomy order axiom, if x € A,
d(p,z) < 6, x ¢ B and vice-versa. Thus A and B are disjoint. By part b, A
and B are separated. O

(d)

Proof. Let a and b be elements of a connected metric space. Then, for every
€ € [0,d(a,b)] there needs to exist a point ¢ such that d(a,c) = € or else by part
¢ the metric space would be separated. Hence, there is bijection between points
in our connected metric space and the interval [0, d(a,b)]. By the corollary to
theorem 2.43, our metric space is uncountable. O

Question 20

Proof. Let y € R%. Let € > 0. Consider the following sets,

A={z|d(y z) <e}
B={x]d(y,z)= e}

The union of these sets is R? which is connected. However, the interior of the
union is the following,

A={qldp,q) <e}
B={ql|d(p,q) > €}

which we proved in question 19.c to be separated.

Take E to be a connected subset of in a metric space. Let E = AU B where

ANB=9o
ANB=g

Also,
E=(ENnA)U(ENB)

Because (ENA) C A, (ENA)C A. Also, (EN B) C B. Hence,

(ENA)NB=g

AN(ENB)=g



It follows that,

(ENA)N(ENB)=o

(ENA)N(ENB)=o

Hence EN A and E'N B are separated and separate E. This is a contradiction
to the assumption that F is connected. Hence F must be connected. O



