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Question 1

(=>)

Proof. Let E be a disconnected set. Then there exists A and B such that
E = A ∪B and

A ∩B = ∅
A ∩B = ∅

Because A ⊂ A, A ∩ B = ∅. If A or B is empty, then E = A or E = B
which contradicts the assumption that E is disconnected. Hence A and B are
nonempty.

By contradiction assume A is not open relative to E. Then for all ϵ > 0 and
a ∈ A, B(a, ϵ) contains a point b ∈ E ∩ Ac = E ∩ B. Then a ∈ B which is a
contradiction since A ∩B = ∅.

Identically, by contradiction assume B is not open relative to E. Then for
all ϵ > 0 and b ∈ B, B(b, ϵ) contains a point a ∈ E ∩ Bc = E ∩ A. Then b ∈ A
which is a contradiction since B ∩A = ∅.

(<=)

Proof. Let E = A ∪B where A and B nonempty, A ∪B = ∅ and A and B are
both open relative too E.

We want to show that A ∩ B = ∅. By contradiction, take x ∈ A ∩ B. Be-
cause A ⊂ A, x ∈ A. There exists an ϵ > 0, because B is open relative to E, so
that B(x, ϵ) ∩ E ⊂ B. This produces a contradiction as x ∈ A and x ∈ B(x, ϵ)
yet A ∪B = ∅. Hence A ∩B = ∅.

Identically, we want to show that B∩A = ∅. By contradiction, take x ∈ B∩A.
Because B ⊂ B, x ∈ B. There exists an ϵ > 0, because A is open relative
to E, so that B(x, ϵ) ∩ E ⊂ A. This produces a contradiction as x ∈ B and
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x ∈ B(x, ϵ) ⊂ B yet A ∪B = ∅. Hence B ∩A = ∅.

It follows that E is disconnected.

Question 17

Proof. Let E be the set of all x ∈ [0, 1] such that the decimal expansion of x
contains only 4 and 7. For each x ∈ E, define the sequence an such that the
nth element is 1 if the nth element of the decimal expansion is a 4 and a 0 if it
is a 7. Then, let A be the collection of these sequences.

A = {an | x ∈ E}

This collection contains every sequence whose elements are 1 and 0. By theorem
2.14, A is uncountable. We have described a bijection between A and E so E
is also uncountable.

Take y = .1. Let ϵ = .1. Then B(y, ϵ) = (0, .2). There exists no element
of E in this interval because elements must start with either .4 or .7. Hence
E ⊂ [.4, .8]. Consequently, E is not dense in [0, 1].

E is bounded as for x ∈ E, d(0, x) < .8. It remains to show that E is closed to
prove it compact. Take y ∈ Ec. Then the nth decimal of y is neither 4 or 7,
lets call this number a. Call the n+ 1th decimal b. Let the decimal expansion
of ϵ be all zeros except for the n+ 1st term which is a 1. For b = [1, 8], B(y, ϵ)
is the following interval,

(...
a

10n
+

b− 1

10n+1
..., ...

a

10n
+

b+ 1

10n+1
...)

For these values of b, every x ∈ B(y, ϵ) has an a in the nth decimal position,
which means x ∈ Ec. Next, consider b = 9, then B(y, ϵ) is the following

(...
a

10n
+

8

10n+1
..., ...

a+ 1

10n
+

0

10n+1
...)

Even if a+ 1 might be a 4 or 7, we know that the n+ 1st term is 0. Hence, all
x in this interval are also members of Ec. Lastly, consider b = 0 for which the
interval takes the form,

(...
a− 1

10n
+

9

10n+1
..., ...

a

10n
+

1

10n+1
...)

In this case, even if a − 1 is a 4 or 7, these numbers have a 9 in the n + 1st
decimal position meaning they are all members of Ec. Hence, Ec is open which
in turn means E is closed. Consequently, E is compact.

Take 0.4 ∈ E. Let ϵ = 0.01. Then,

B(0.4, 0.01) = (0.39, 0.41)
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This ball contains no elements of E as all other elements start with 0.7 or 0.44.
Hence, for all other x ∈ E, x /∈ B(0.4, 0.01). Thus, all elements of E are not
limit points so E is not perfect.

Question 18

Proof. Let n = 0, 1, 2, . . . . Let Fn be defined as follows,

F0 = [0, 1]

F1 = [0, 1/3] ∪ [2/3, 1]

F2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

...

Then the Cantor set is C =
⋂∞

n=0 Fn. Because each Fn is closed, C is closed.
Each Fn+1 ⊂ Fn so by theorem 2.38, C is non-empty. Take x ∈ C. Let ϵ > 0.
There exists n sufficiently large that

1

3n
< ϵ

Then there are two cases.

Case 1:

Assume x is an upper bound for its interval. Then, for all n = 0, 1, 2, . . . there
exists a point of C at x − 1

3n . Hence for any ϵ, d(x, x − 1
3n ) < ϵ so B(x, ϵ)

contains another point in C. Consequently x ∈ C ′.

Case 2:

Assume x is a lower bound for its interval.Then, for all n = 0, 1, 2, . . . there
exists a point of C at x + 1

3n . Hence for any ϵ, d(x, x + 1
3n ) < ϵ so B(x, ϵ)

contains another point in C. Consequently x ∈ C ′.

Thus, C is perfect.

Lastly, consider the linear transformation of C so that it operates on the in-
terval [

√
2, 1 +

√
2]. As a result,

√
2 is added to every value. Thus, every value

becomes irrational as an irrational added to a rational is irrational. Hence,
C +

√
2 is irrational, nonempty, and perfect.
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Question 19

(a)

Proof. Let A and B be disjoint closed sets in some metric space X. Because
they are closed,

A = A

B = B

Also, since they are disjoint,

A ∩B = ∅
A ∩B = ∅
A ∩B = ∅

Hence, A and B are separated.

(b)

Proof. Let A and B be disjoint open sets in some metric space X.

Take a ∈ A. For each ϵ > 0, B(a, ϵ) contains another point a′ ∈ A. Hence
B(a, ϵ) /∈ B. Consequently, a /∈ B since B is open.

Identically, take b ∈ B. For each ϵ > 0, B(b, ϵ) contains another point b′ ∈ B.
Hence B(b, ϵ) /∈ A. Consequently, b /∈ A since A is open.

So,

A ∩B = ∅
A ∩B = ∅

which means A and B are separated.

(c)

Proof. Fix p ∈ X. Let δ > 0. Let

A = {q | d(p, q) < δ}
B = {q | d(p, q) > δ}

So, A = B(p, δ) so A is open. Take q ∈ B, let d(p, q) = δ + ϵ for some ϵ > 0.
Let z ∈ B(q, ϵ/2), so d(q, z) < ϵ/2. By the reverse triangle inequality,

d(p, q)− d(q, z) < d(p, z)
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We know that δ + ϵ < d(p, q) and d(q, z) < ϵ/2. Hence,

δ + ϵ− ϵ/2 < d(p, z)

δ < d(p, z)

So, z ∈ B. Hence B is open. Lastly, by the trichotomy order axiom, if x ∈ A,
d(p, x) < δ, x /∈ B and vice-versa. Thus A and B are disjoint. By part b, A
and B are separated.

(d)

Proof. Let a and b be elements of a connected metric space. Then, for every
ϵ ∈ [0, d(a, b)] there needs to exist a point c such that d(a, c) = ϵ or else by part
c the metric space would be separated. Hence, there is bijection between points
in our connected metric space and the interval [0, d(a, b)]. By the corollary to
theorem 2.43, our metric space is uncountable.

Question 20

Proof. Let y ∈ R2. Let ϵ > 0. Consider the following sets,

A = {x | d(y, x) ≤ ϵ}
B = {x | d(y, x) ≥ ϵ}

The union of these sets is R2 which is connected. However, the interior of the
union is the following,

A = {q | d(p, q) < ϵ}
B = {q | d(p, q) > ϵ}

which we proved in question 19.c to be separated.

Take E to be a connected subset of in a metric space. Let E = A ∪B where

A ∩B = ∅
A ∩B = ∅

Also,

E = (E ∩A) ∪ (E ∩B)

Because (E ∩A) ⊂ A , (E ∩A) ⊂ A. Also, (E ∩B) ⊂ B. Hence,

(E ∩A) ∩B = ∅

A ∩ (E ∩B) = ∅
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It follows that,

(E ∩A) ∩ (E ∩B) = ∅

(E ∩A) ∩ (E ∩B) = ∅

Hence E ∩ A and E ∩B are separated and separate E. This is a contradiction
to the assumption that E is connected. Hence E must be connected.
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