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Question 12

Proof. Let K ⊂ R1 be the set of points 1/n for n ∈ N and 0. Let {Gα | α ∈ A}
be an open cover of K. Then we know that 0 is contained in at least one of these
Gα, without loss of generality 0 ∈ G0. Because G0 is open, there exists and
ϵ > 0 such that if d(0, x) < ϵ, then x ∈ G0. Then there exists an N ∈ N such
that for each n > N , 1/n < ϵ. Hence for each n > N , the points 1/n ∈ G0.
This leaves us the set of finite points n = 1, 2, ...N . Since they are in K, they
are covered in the open cover and because they are finite, there are a finite
Gα1, Gα2, ...GαN which cover them. Hence,

K ⊂ G0 ∪Gα1Gα2 ∪ ... ∪GαN

Thus there exists a finite subcover.

Question 14

Proof. Take the cover {Gn | n ∈ N} where

Gn = (1/n, 1)

Then by the archimedes property, for each real number x ∈ (0, 1) there exists
an n > 1/x. Hence,

0 < 1/n < x < 1

Consequently,

(0, 1) ⊂
⋃
n∈N

Gn

However, take an arbitrary finite subset n1, n2...nk. Letm = max(n1, n2, ...nK).
Then, by the density of real numbers there exists an x such that,

0 < x < 1/m < 1

Because m is the max, 1/m < 1/nk for k = 1, ...K. So x is not covered by the
finite subcover. Hence, there doesn’t exist a finite subcover.
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Question 15

Proof. Take the set Kn = (0, 1/n) where n ∈ N. Then, clearly each set is
bounded by 1 and 0. However, ∩Kn = ∅ as for 0 < x < 1, there exists an n
large enough by the archimedean property such that 0 < 1/n < x < 1 so that
x /∈ Kn. Hence x /∈ ∩Kn.

Take the set Kn = [n,∞). Take an arbitrary limit point x of Kn, for all
ϵ > 0, there exists another point y ∈ Kn such that d(x, y) < ϵ. Hence, is closed.
However, for any x ∈ [n,∞), there exists a N ∈ N such that x < N . Hence
x /∈ KN so x /∈ ∩Kn. Thus, ∩Kn = ∅

Question 22

Proof. Take the metric space Rk. Consider subset, Qk which is the set of points
with rational coordinates. Then Qk = Q×Q× ...×Q. Because Q is countable,
so too is Qk. Take any two points x, y ∈ Qk. Then we have

x = (x1, x2, ..., xk)

y = (y1, y2, ..., yk)

Without loss of generality assume xn < yn for n = 1, 2, ..., k. Because each Q is
dense, there exists z such that,

x1 ≤ z1 ≤ y1

x2 ≤ z2 ≤ y2

. . .

xk ≤ zk ≤ yk

Hence,

x ≤ z ≤ y

So Qk is countable and dense, hence Rk is separable.

Question 23

Proof. Let X be a separable metric space. Then there is a countable and dense
subset X ′ ⊂ X. For each x′ ∈ X ′, consider the set balls with a rational radius,
call it Z. Because the rationals are countable this will result in a countable
number of points each with countable balls. Hence, the set of these open sub-
sets is countable.

To show that this set is a base, take an arbitrary x ∈ X and open subset
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G ⊂ X such that x ∈ G. Then for each y ∈ G there exists an ϵ > 0 for
which B(y, ϵ) ⊂ G. Because X ′ is dense, B(y, ϵ/2) contains an element x′ ∈ X ′.
Additionally, because Q is dense, there exists a rational number q such that
d(x′, y) < q < ϵ/2. Then, the ball B(x′, q) is in Z, contains the point y, and
is contained in B(y, ϵ). B(y, ϵ) ⊂ G. Hence, for all x ∈ X and all open sub-
sets G ⊂ X that contain x, there is a subset of Z for which G is the union of
each element of the subset. Thus, Z is a base for X, and as shown above, Z is
countable.

Question 24

Proof. Let X be a metric space in which every infinite subset has a limit point.
Choose x1 ∈ X. Let δ > 0. Choose x2 ∈ X such that

d(x1, x2) > δ

Continue choosing xj ∈ X such that d(xi, xj) > δ for i = 1, ..., j − 1. This
infinite set does not have a limit since the ball B(xn, δ) contains no other point
for n = 1, ...j. This contradicts the assumption of the space, hence, there
must be a number N points that can be spaced as required in the space X.
Consequently the finite set of balls

CN = {B(x1, δ), B(x2, δ), ..., B(xN , δ)}

covers X. This is because there are no more points y such that d(xk, y) > δ for
k = 1, ..., N .

Now, let δ = 1/n. To show that C is dense take an arbitrary point z ∈ X,
for any ϵ > 0, we can select n sufficiently large so that ϵ > δ > 0 so that
B(z, ϵ) contains a point of CN . This is because for every point z in X, there
exists a point c ∈ C such that, d(z, c) < δ < ϵ. Hence, c ∈ B(z, ϵ). Then, the
collection of Cn is countable because it is a countable collection of finite sets.
Consequently, X is separable.

Question 25

Proof. Let K be a compact metric space. Then given any open cover of K, we
can produce a finite subcover. Let ϵ = 1/n where n is a natural number. Take
the open cover

C = {B(x, ϵ) | x ∈ K}

Since every ball is open and contains it’s own point, it is clearly an open cover
of K. Because K is compact for each n ∈ N, there exists a finite subcover
consisting of a finite set of these balls.
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Let δ > 0. Take an arbitrary point k ∈ K and consider the ball B(k, δ). We can
choose n large enough so that δ > 1/n > 0. Let Sn be the set of centers for the
balls generated by this particular n. Then for any point k, the ball B(k, 1/n)
contains a point of S. It follows that the ball B(k, δ) also contains that same
point since δ > 1/n. We can take the union of these points ∪

n
Sn for n = 1, 2, ...

and the resulting set will be countable, since each Sn is finite. Additionally,
now for any δ > 0, B(k, δ) contains an element of S, no matter the size of δ. So
the union is dense in K. Consequently K is separable by this union.

Question 26

Proof. Let X be a metric space in which every infinite subset has a limit point.
By exercise 24, X is separable. Then for every open cover, there exists a count-
able subcover {Gα}, for α = 1, 2, 3, . . .

If there is a finite subcollection of {Gα} that covers X, then X is compact.
Otherwise, let Fn be the complement of G1 ∪ . . . ∪Gn for each n. Fn must be
nonempty if this subcollection of {Gα} doesn’t cover. However,

⋂
Fn is empty.

Consider the set E which contains a point from every Fn. Since E is an in-
finite subset, it must have a limit point. Then there exists some x ∈ E and for
all ϵ > 0, B(x, ϵ) contains a point of E which is also a point of

⋂
Fn. Also,

x ∈ GN for some α because it is a cover of X. So there is some δ > 0 for which
B(x, δ) ⊂ GN . However, there exists δ > ϵ > 0 so that there exists a point from
FN in B(x, δ) which is a contradiction.

Thus, there must be a finite subcollection of {Gα} that covers X. So X is
compact.

Question 27

Proof. Let E ⊂ Rk be an uncountable subset. Let P be all the condensation
points of E. Let {Vn} be a countable base for Rk and let W =

⋃
Vn for n such

that Vn ∩ E is at most countable. Then W is at most countable.

Let x /∈ W . Because Rk is separable, for all ϵ > 0, x is contained in some
Vk such that x ∈ Vk ∈ B(x, ϵ). Because x /∈ W , Vk ∩ E is uncountable. Then
each B(x, ϵ) contains some Vk that has uncountable elements of E. Hence, x is
a condensation point, so x ∈ P .

Take x /∈ P , then there exists ball around x that contains at most countable
elements of E. Because Rk is separable, there exists a Vk contained in this ball.
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Then Vk ∩ E is at most countable. Hence, x ∈ W . It follows that P = W c.

We have shown that W ∩E is at most countable, since W is a countable union
of at most countable sets. Hence P c ∩ E is countable.

Because W is the union of open sets, W is open and so P is closed.

P ′ ⊂ P

Let x ∈ P and consider an arbitrary ball B. By contradiction assume the
ball B contains no other point in P . Then, for all y ∈ B, y ∈ W . Then,
B ∩E ⊂ W ∩E ∪ {x}. Thus, because W ∩E is at most countable, B ∩E is at
most countable, which is a contadiction. So B must contain another point of P
other than x. So x is a limit point. Hence,

P ⊂ P ′

It follows that P is perfect

Question 28

Proof. Let E be a closed set in the separable metric space X. Because E is
closed, it contains all of its limit points and condensation points. Let P be the
condensation points of E. Then

E = P ∪ {E\P}

P is perfect and E\P is at most countable by Question 27.

Question 29

Proof. Because Rk is separable, so too is R1. Consequently, it has a countable
base {Gα}. Let E be an open set in R1. Because E is open, E is equal to the
union of some subcollection of {Gα}. Call this subscollection B.

∪B = E

Becuase {Gα} is countable, so it B.

Because we are working in R1, open sets take the form,

(a, b)

Then, for every Gx and Gy in B, if

Gx ∩Gy ̸= ∅
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we can combine them into one open interval. Let Gx = (x1, x2) and Gy =
(y1, y2). Without loss of generality, assume x1 ≤ y1 and x2 ≤ y2. Then we can
combine them into one open interval that covers the same set as follows,

Gxy = (x1, y2)

The selection of x1 and y2 specifically are not important. They need only be the
lower of the two lower bounds and the upper of the two upper bounds. With
this process,

Gx ∪Gy = Gxy

This process can be carried out for every overlapping Gx and Gy. Then, let
the set of remaining open intervals be called A. Since combining two intervals
removes one from the set, and B is countable, A is at most countable. Also,

∪A = ∪B

So,

∪A = E

We have ensured that every Gx ∈ A is disjoint from any other Gy ∈ A so, E is
equal to an at most countable union of disjoint segments.
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