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Question A

Proof. Let

S—{2n3_2:n6N}

n

S is non-empty. Take n = 1, then 0 € S. Let ¢ > 0. Because n is a natural
number, n > 0. Hence,

2 2 2 2n —2

> - = =

373 3n 3n
Thus, 2/3 is an upper bound for the set S. Also, S is nonempty. Also, by the
Archimedean property of natural numbers, for each e, there exists some n € N
such that

sn 1
2 €
Consequently,
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Hence, 2/3 is the supremum of S. O

Question B

Proof. Let S and T be two bounded, nonemtpy sets of real numbers. Let s € S
and ¢t € T. Then for any s and t, by the

max(sup S, sup T) > sup S > s

>
max(sup S, sup T) > sup T > ¢



So, forz e SUT
max(sup S, sup T) > =
For each € > 0, there exist some t and s such that,

sup S—e<s
sup T—e<t

Without loss of generality, sup S > sup T. Then,
max(sup S, sup T) =sup S
Hence, for each € > 0, there exists some s € .S, such that,
max(sup S, sup T) —e < s
Because s € SUT,

max(sup S, sup T) =sup SUT

Question C

Proof. Let S and T be two bounded sets and let s € S and ¢t € T. Then, sup S
+ sup T > s+t for any s and t because,

sup S > s
sup T >t

Hence, sup S + sup T is an upper bound for the set S + T'. For each ¢/2 > 0,
there exists some elements s and t such that

€
supS—-<s
% 5 =

sup T — % <t
Consequently,
(supT—%)—i—(supS—g) <s+t
sup T+supS—e<s+t
Thus,

sup T + sup S = sup(T+S)



Question 1

Proof. Let r be a nonzero rational number and let x be irrational. Then let
p,q;n,m € Z.

_ b
r==%
q
By contradiction assume r +x = = and 7z = . Then,
r+x= P +x= n
q m
ng — pm
=

Because each of p, g, n, m are integers, the fraction is a rational number. Hence
a contradiction is achieved. Also,
pr n
rr=—=—
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xr =

This fraction is also a rational number, contradicting the assumption. O

Question 2

Proof. Proceeding by contradiction assume that 12 has a rational square root.
Then, there exists we can write 12 = p/q where p and ¢ are coprime integers.

Hence,
2
(-
q
»\2
£2) =3
<2Q)
So it follows that v/3 is rational. Let 2¢ = k, another integer. Hence,
p2 — 3k,2

Since p? is a multiple of 3, because 3 is prime, it follows that p is a multiple of
3. So we can say p = 3j. So,

(34)* = 3k?
3j2 _ k2

By the same reasoning, k is also a multiple of three. Consequently, q is also a
multiple of three. This contradicts the assumption that p and q are coprime. [



Question 5

Proof. Let a = Sup(—A). Then —a = — Sup(—A). By the definition of the
least upper bound, for each ¢ > 0, there exists some x € A such that

a—€e< —x
Hence,
—ate>x
This satisfies the definition of the infimum of A. Consequently, — Sup(—A) =

Inf (A)
O

Question 7

Let b> 1,y >0, and z € R.

(a)

Let n be a positive integer.

V' —1=0b—- 10" "4 1) > (b 1)(n)

(b)
By part a,
b—1=("Y")" -1
(L™ — 1> nb/™ —1)
Hence,
b—1>n(b'/"—1)
(c)

Let t > 1 and assume that n > EZZ:B By assumption,

nt—1)>(b-1)
Then by part b,

n(t—1) > n(b/™ 1)
t—1>b/" -1
t> b/



(d)
Assume that w is such that b < y. Let t = % and apply part c. Because
b* <y, y > 1. Then, for sufficiently large n,

Y 1/n
—>b
bw
y > bl/n+w

(e)
Let b > y. So % > 1. Let t = % and let n be sufficiently large. Then apply

part c,

piim <
y
bw

y< pl/n
bw—l/n >y

(f)
Let A be the set of all w such that b* < y. A is bounded above by y and for

w=0, <1<y, so A is nonempty. Thus there exists a Sup A, lets call it x.
Proceeding by contradiction, assume b* # y.

Case 1

Assume b* < y. In this case, let w = x + 1/n for sufficiently large n. As such,
w € A and

bE < b;c-l—l/n <y
Hence, x is not a upper bound for A, which contradicts the assumption.

Case 2

Assume b* > y. Then, there exists an n large enough such that b1/ > 4.
By the property of least upper bounds, there also exists an element w € A such
that for each n,

b >y > b0 > bprn sy
Which is a contradiction. Consequently,

b=y



(g)

By contradiction, assume that both z and z are both unique real numbers such
that,

y = b’E = bz
Without loss of generality assume z < z. Then,
b = b? = szr(:z:fz) S

We know that x — z > 0, so b* = b*b* "% > b* which is a contradiction.

Question 8

By contradiction assume that there exists some ordering of the complex num-
bers. Then, we know that squares of numbers in ordered fields are positive.
Hence i2 = —1 > 0. Also, —12 = 1 > 0. However, —1 4+ 1 = 0. Consequently
—1 < 0 which is a contradiction. So the complex numbers cannot be made into
an ordered field.

Question 11

Let z and w be a complex numbers and let |w| = 1. Let > 0. Take

z
— =w
|2

Then, let r = |z| so that
z=rw

This combination of r and w is uniquely defined by z. Assume there is some
other x € C such that x = rw. By substituting from the previous equation we
know that x = z. Thus, z uniquely defines r and w.

Question 14

Let z be a complex number such that |z| = 1. Then,

L4z + 1=z =(1+2)(1+2) +(1-2)(1-7)
=4



