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Question A

Proof. Let

S =

{
2n− 2

3n
: n ∈ N

}
S is non-empty. Take n = 1, then 0 ∈ S. Let ϵ > 0. Because n is a natural
number, n > 0. Hence,

2

3
>

2

3
− 2

3n
=

2n− 2

3n

Thus, 2/3 is an upper bound for the set S. Also, S is nonempty. Also, by the
Archimedean property of natural numbers, for each ϵ, there exists some n ∈ N
such that

3n

2
>

1

ϵ

Consequently,

2

3n
< ϵ

2

3
− 2

3n
>

2

3
− ϵ

2n− 2

3n
>

2

3
− ϵ

Hence, 2/3 is the supremum of S.

Question B

Proof. Let S and T be two bounded, nonemtpy sets of real numbers. Let s ∈ S
and t ∈ T . Then for any s and t, by the

max(sup S, sup T) ≥ sup S ≥ s

max(sup S, sup T) ≥ sup T ≥ t
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So, for x ∈ S ∪ T

max(sup S, sup T) ≥ x

For each ϵ > 0, there exist some t and s such that,

sup S− ϵ ≤ s

sup T− ϵ ≤ t

Without loss of generality, sup S ≥ sup T. Then,

max(sup S, sup T) = sup S

Hence, for each ϵ > 0, there exists some s ∈ S, such that,

max(sup S, sup T)− ϵ ≤ s

Because s ∈ S ∪ T ,

max(sup S, sup T) = sup S ∪ T

Question C

Proof. Let S and T be two bounded sets and let s ∈ S and t ∈ T . Then, sup S
+ sup T ≥ s+ t for any s and t because,

sup S ≥ s

sup T ≥ t

Hence, sup S + sup T is an upper bound for the set S + T . For each ϵ/2 > 0,
there exists some elements s and t such that

sup S− ϵ

2
≤ s

sup T− ϵ

2
≤ t

Consequently,

(sup T− ϵ

2
) + (sup S− ϵ

2
) ≤ s+ t

sup T + sup S− ϵ ≤ s+ t

Thus,

sup T + sup S = sup(T+S)

2



Question 1

Proof. Let r be a nonzero rational number and let x be irrational. Then let
p, q, n,m ∈ Z.

r =
p

q

By contradiction assume r + x = n
m and rx = n

m . Then,

r + x =
p

q
+ x =

n

m

x =
nq − pm

qm

Because each of p, q, n,m are integers, the fraction is a rational number. Hence
a contradiction is achieved. Also,

rx =
px

q
=

n

m

x =
nq

mp

This fraction is also a rational number, contradicting the assumption.

Question 2

Proof. Proceeding by contradiction assume that 12 has a rational square root.
Then, there exists we can write 12 = p/q where p and q are coprime integers.
Hence, (

p

q

)2

= 12(
p

2q

)2

= 3

So it follows that
√
3 is rational. Let 2q = k, another integer. Hence,

p2 = 3k2

Since p2 is a multiple of 3, because 3 is prime, it follows that p is a multiple of
3. So we can say p = 3j. So,

(3j)2 = 3k2

3j2 = k2

By the same reasoning, k is also a multiple of three. Consequently, q is also a
multiple of three. This contradicts the assumption that p and q are coprime.
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Question 5

Proof. Let α = Sup(−A). Then −α = − Sup(−A). By the definition of the
least upper bound, for each ϵ > 0, there exists some x ∈ A such that

α− ϵ < −x

Hence,

−α+ ϵ > x

This satisfies the definition of the infimum of A. Consequently, − Sup(−A) =
Inf (A)

Question 7

Let b > 1, y > 0, and x ∈ R.

(a)

Let n be a positive integer.

bn − 1 = (b− 1)(bn−1 + bn−2 + bn−3 + ...+ 1) ≥ (b− 1)(n)

(b)

By part a,

b− 1 = (b1/n)n − 1

(b1/n)n − 1 ≥ n(b1/n − 1)

Hence,

b− 1 ≥ n(b1/n − 1)

(c)

Let t > 1 and assume that n > (b−1)
(t−1) . By assumption,

n(t− 1) > (b− 1)

Then by part b,

n(t− 1) > n(b1/n − 1)

t− 1 > b1/n − 1

t > b1/n
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(d)

Assume that w is such that bw < y. Let t = y
bw and apply part c. Because

bw < y, y > 1. Then, for sufficiently large n,

y

bw
> b1/n

y > b1/n+w

(e)

Let bw > y. So bw

y > 1. Let t = bw

y and let n be sufficiently large. Then apply
part c,

b1/n <
bw

y

y <
bw

b1/n

bw−1/n > y

(f)

Let A be the set of all w such that bw < y. A is bounded above by y and for
w = 0, b0 < 1 < y, so A is nonempty. Thus there exists a Sup A, lets call it x.
Proceeding by contradiction, assume bx ̸= y.

Case 1

Assume bx < y. In this case, let w = x + 1/n for sufficiently large n. As such,
w ∈ A and

bx < bx+1/n < y

Hence, x is not a upper bound for A, which contradicts the assumption.

Case 2

Assume bx > y. Then, there exists an n large enough such that bx−1/n > y.
By the property of least upper bounds, there also exists an element w ∈ A such
that for each n,

bx > y > bw > bx−1/n > y

Which is a contradiction. Consequently,

bx = y
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(g)

By contradiction, assume that both x and z are both unique real numbers such
that,

y = bx = bz

Without loss of generality assume z < x. Then,

bx = bz = bz+(x−z) = bzbx−z

We know that x− z > 0, so bz = bzbx−z > bz which is a contradiction.

Question 8

By contradiction assume that there exists some ordering of the complex num-
bers. Then, we know that squares of numbers in ordered fields are positive.
Hence i2 = −1 > 0. Also, −12 = 1 > 0. However, −1 + 1 = 0. Consequently
−1 < 0 which is a contradiction. So the complex numbers cannot be made into
an ordered field.

Question 11

Let z and w be a complex numbers and let |w| = 1. Let r ≥ 0. Take

z

|z|
= w

Then, let r = |z| so that

z = rw

This combination of r and w is uniquely defined by z. Assume there is some
other x ∈ C such that x = rw. By substituting from the previous equation we
know that x = z. Thus, z uniquely defines r and w.

Question 14

Let z be a complex number such that |z| = 1. Then,

|1 + z|2 + |1− z|2 = (1 + z)(1 + z) + (1− z)(1− z)

= 4
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